Построение графиков функций
В школе на математике мы чаще работаем с цифрами и формулами, чем с чертежами. Пора это исправлять! Чтобы подготовиться к ЕГЭ, нам точно пригодятся графики функции — об этом и поговорим.
Понятие функции
Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие значения функции. Вот, какими способами ее можно задать:
Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
Графический способ — наглядно.
Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
Словесный способ.
Область определения функции — это множество всех допустимых значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох.
Например, для функции вида
𝑦
=
1
𝑥
y=
x
1
область определения выглядит так
х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): (-∞; 0) ⋃ (0; +∞).
Область значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.
Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): [0; +∞).
-
Все мероприятия на нашем портале проводятся строго в соответствии с действующим законодательством и ФГОС
-
Результаты олимпиад доступны моментально. Результаты участия в творческом конкурсе или публикации статей – в течение 1 рабочего дня
-
Участие в любом конкурсе – бесплатное. Вы оплачиваете изготовление документа только когда знаете результат