Доказательство неравенств во внеклассной работе со школьниками | Морозова Валерия Андреевна. Работа №305573
В моей методической разработке рассмотрены следующие виды задач:
1. Доказательство неравенств с помощью рассмотрения разности его частей и алгебраических преобразований. 2. Задачи на доказательства с использованием уже доказанных неравенств (неравенство Коши, Коши-Буняковского, Йенсена и др.) 3. Метод математической индукции. 4. Метод «оценка + пример».
Например, доказывать неравенства с помощью математической индукции и Неравенством Евклида можно ученикам 8 класса на внеклассных занятиях. Неравенства Коши и Неравенства Бернулли рассматривать уже в 9 классе, когда учащиеся владеют достаточными знаниями по данной теме. С Неравенством Коши-Буняковского можно познакомить учащихся в 10 классе на внеклассной работе. А с Неравенством Йенсена в 11 классе, так как понятие производной в школьном курсе алгебры вводится только в 11 классе. Все вышеперечисленные виды неравенств играют большую роль в курсе алгебры.
Данная разработка рассчитана на учащихся, которые имеют довольно-таки высокий уровень знаний в области математики, причем как в пределах, так и вне школьной программы, но все равно хотят его повысить.
Методическая разработка
«Доказательство неравенств во внеклассной работе со школьниками»
Автор: Морозова В.А.,
учитель математики
МБОУ «СОШ-ДС № 37 им. И.Г.Генова»
Симферополь, 2022
Содержание
Введение…………………………………………………………………………...3
1.Свойства и основные методы доказательства неравенств…………………...6
2.Доказательство неравенств с помощью рассмотрения разности частей и алгебраических преобразований………………………………………………....8
3.Использование известных неравенств………………………………………10
3.1 Неравенство Евклида (8-9 класс)…………………………………………10
3.2 Неравенство Коши (9-10 класс)…………………………………………..13
3.3 Неравенство Бернулли (9-10 класс)…………………………..………….18
3.4 Неравенство Коши- Буняковского (10-11 класс)……………………..…22
3.5 Неравенство Йенсена (11 класс)……………………………………….....25
4.Метод математической индукции ( 8-9 класс)…………………………...….27
5.Метод «оценка+ пример» (8-11класс)……………………………………......29
6.Самостоятельно составленные задачи…………………………………….....33
Заключение……………………………………………………………………….36
ВВЕДЕНИЕ
Задачи на доказательство неравенств занимают очень важное место для математической подготовки учеников. Учащиеся знакомятся с понятием неравенство еще в младшей школе , изучая отношения "больше", "меньше", "равно" и учатся записывать результаты сравнения с помощью знаков , а так же читать полученные неравенства. Далее школьники встречаются с понятием неравенство в 5-6 классах. Они встречаются с такими заданиями:
Какая из точек лежит левее на координатном луче …
Запишите с помощью двойного неравенства.
Я задумал
а
число, оканчивающееся на 5. Оно больше 210 и меньше 220. Назовите его…
Ближе всего знакомятся с доказательством неравенств учащиеся в 8 классе. В рабочей программе по алгебре для 8 класса особое внимание уделяют на следующие темы: «Числовые неравенства и их свойства», «Линейные неравенства с одной переменной», «Системы неравенств с одним неизвестным». Все приобретенные учащимися навыки находят применение при изучении тем «Решение квадратичных неравенств».
Обучающиеся должны знать, хотя бы три способа для решения квадратичных неравенств:
1. На основе разложения квадратного трехчлена на множители, построение эскиза графика квадратного трехчлена и написать ответ.
2. На основе разложения квадратного трехчлена на множители, использовать метод интервалов.
3. Графический метод решения неравенства: ах2 + вх +с>0 ; ах2 > - вх – с.
После детального изучения школьной программы , в части на доказательства неравенств ,учащиеся могут узнать намного больше интересных и познавательных задач на внеурочной деятельности.
В моей методической разработке рассмотрены следующие виды задач:
1. Доказательство неравенств с помощью рассмотрения разности его частей и алгебраических преобразований.
2. Задачи на доказательства с использованием уже доказанных неравенств (неравенство Коши, Коши-Буняковского, Йенсена и др.)
3. Метод математической индукции.
4. Метод «оценка + пример».
Например, доказывать неравенства с помощью математической индукции и Неравенством Евклида можно ученикам 8 класса на внеклассных занятиях.
Неравенства Коши и Неравенства Бернулли рассматривать уже в 9 классе, когда учащиеся владеют достаточными знаниями по данной теме.
С Неравенством Коши-Буняковского можно познакомить учащихся в 10 классе на внеклассной работе. А с Неравенством Йенсена в 11 классе, так как понятие производной в школьном курсе алгебры вводится только в 11 классе. Все вышеперечисленные виды неравенств играют большую роль в курсе алгебры.
Данная разработка рассчитана на учащихся, которые имеют довольно-таки высокий уровень знаний в области математики, причем как в пределах, так и вне школьной программы, но все равно хотят его повысить.
Существуют различные методы доказательства неравенств:
1. Рассмотрение разности левых и правых частей.
2. Рассмотрение частного и сравнение с единицей.
3. Метод от противного.
4. Использование уже доказанных неравенств.
2. Доказательство неравенств с помощью рассмотрения разности его частей и алгебраических преобразований.
Задача 1. (Окружной этап всероссийской олимпиады для 9 класса 1992-1993 учебный год)
Докажите, что верно неравенство x2 + xy + y2 ≥ 3(x + y − 1), для любых действительных чисел x и y.
Доказательство:
Разберем данное выражение как квадратный трехчлен относительно x:
x2 + xy + y2 - 3(x + y − 1) = x2 + (y − 3)x + (y2 – 3y + 3)
Посчитаем дискриминант и получим:
−3(y− − 1)2
Итак, дискриминант отрицателен.
Трехчлен допускает только положительные значения и показатель > 0, следовательно x2 +xy+y2 ≥ 3(x+y−1) при любых x и y. Равенство верно, когда x = y = 1.
Задача 2. (Белорусская республиканская олимпиада, 9 класс 1962-1963 учебный год )
Докажите, что наибольшая площадь треугольника равна 1, стороны которого a, b, c заключены в пределах: 0x 1y2z3 ?
Доказательство:
Площадь треугольника находим по формуле: S = xy·sin𝝰
Среди треугольников со сторонами x, y, удовлетворяющими условию задачи наибольшую площадь имеет прямоугольный треугольник с катетами x = 1 и y = 2. Третья сторона z удовлетворяет условию задачи, следовательно указанный треугольник имеет наибольшую площадь среди всех рассматриваемых. Следовательно площадь треугольника равна 1.
Задача 3.
F(x) — квадратный трехчлен с показателями больше нуля.
Докажите, верно неравенство: (F(xy))2 ≤ F(x)2 F(y)2.
Доказательство:
Пусть F(x)= ax2+bx+c. Тогда (F(xy))2-F(x2)F(y2)= (ax2y2+bxy+c)2- (ax4+bx2+c)(ay4+by2+c)= a2x4y4+b2x2y2+c2+2abx3y3+2acx2y2+2bcxy-a2x4y4-b2x2y2-b2x2y2-c2-abx2y2(x2+y2)-ac(x4+y4)-bc(x2+y2)=abx2y2(2xy-x2-y2)+ac(2x2y2-x4-y4)+bc(2xy-x2-y2)=-abx2y2(x-y)2-ac(x2-y2)2-bc(x-y)2
При a ≥ 0, b ≥ 0, c ≥ 0 данные слагаемых отрицательны, следовательно неравенство (F(xy))2 ≤ F(x)2 F(y)2.
3. Использование известных неравенств.
Основные неравенства, на которые опираются при доказательстве других неравенств:
3.1 Неравенство Евклида (8-9 класс)
≥ , при ≥ 0
- = = ≥ 0
Следовательно, ≥
Равенство достигается, тогда и только тогда, когда числа равны.
Рассмотрим задачи на неравенство Евклида:
Задача 1.
Доказать, что + ≤ для a, b >0
Доказательство:
Возведем обе части в квадрат:
+ + ≤
Далее, приведем к общему знаменателю и раскроем скобки, получим:
2(1 + a2 + b2 + a2b2) −(1 + b2 + ab + ab3) −(1 + a2 + ab + a3b) = (1 −ab)(a − b)2 ≥ 0
Из неравенства Евклида о средних для двух чисел имеем:
≤ + ≤
Сложив полученные неравенства, получаем что что + ≤
Задача 2.
Доказать, что для положительных чисел а, b и с:
(a+b)(b+c)(c+a) 8abc
Доказательство:
Согласно тому, что .
Если мы перемножим оба неравенства, то получим, что (a+b)(b+c)(c+a) 8abc
Задача 3.
Доказать, что если x > 0, y > 0, z > 0, то + + ≥ 3
Доказательство:
Введем замену переменных:
a= y+z
b= x+z
c= y+x;
Выразим переменные:
2x = − + +
2y = − +
2z = + − .
Получаем неравенство
+ + ≥ 3
+ + ≥ 6
Мы видим, что все три скобки больше или равны двум. Следовательно , левая часть неравенства больше или равна шести.
3.2 Неравенство Коши (9-10 класс)
К числу наиболее часто встречающихся в математике числовых неравенств относится неравенство: «среднее арифметическое двух или более неотрицательных чисел больше или равно их среднему геометрическому», которое носит название Неравенство Коши:
, , ≥ 0
Рассмотрим задачи на Неравенство Коши:
Задача 1.
Доказать неравенство: (1+a)(1+b)(1+c) ≥ 8(1-a)(1-b)(1-c), при этом a+b+c=1
Доказательство:
Так как, по условию a+b+c=1, значит 1+a=(1-b)+(1-c).
Далее, применим неравенство Коши между средним арифметическим и средним геометрическим x + y ≥2 , получим:
1+ a ≥ 2 .
1+b ≥ 2 .
1+c ≥ 2 .
Теперь, если мы перемножим данные неравенства, то увидим ,что (1+a)(1+b)(1+c) ≥ 8(1-a)(1-b)(1-c).
Задача 2.
Докажите, что для любого натурального n 2 имеют место неравенства n< +…+ < n+1
Доказательство :
Применим неравенство между средним арифметическим и средним геометрическим для чисел 2, , ,..,. В результате получим:
, т.е
Применим неравенство между средним арифметическим и средним геометрическим для чисел 2, , ,..,. В результате получим :
, т.е
Задача 3.
Доказать, что для любых четырех действительных чисел a, b, c, d выполняется неравенство:
≥ 4abcd
Доказательство :
Применим неравенство Коши между средним арифметическим и средним геометрическим, получим:
≥
Следовательно, ≥ 4abcd
Задача 4.
Для положительных чисел a, b, c доказать неравенство:
+ + ≥ 3
Доказательство :
Перепишем данное неравенство в виде: ≥ 1
Выражение в левой части – это среднее арифметическое трех чисел , , .
Среднее геометрическое этих чисел равно:
Наше неравенство сводится к неравенству для среднего арифметического и среднего геометрического трех указанных чисел.
Следовательно, + + ≥ 3
Задача 5.
Докажите, что ≥ 2, если a + b = 2.
Доказательство:
Введем замену переменных a: a = 1 − x, тогда , b = 1 + х.
Следовательно, = 2 + 12 + 2 ≥ 2.
А значит ≥ 2.
Задача 6. ( Сборник ЕГЭ профильный уровень 2018 год)
Доказать неравенство:
≤
Доказательство:
В данном неравенстве мы видим формулы квадрата суммы и квадрата разности, введем замену переменных : a = ,b = .
Тогда получим:
a+b= =
Данное неравенство принимает вид:
+ ≤ , откуда +- 2ab ≤ 0
Неравенство верно, при условии, если a=b.
Следовательно:
=
Выполним умножение крест-накрест и получим:
x =
Ответ: x =
Задача 7. ( Сборник ЕГЭ профильный уровень 2018 год)
Доказать неравенство:
Доказательство:
Избавимся от знаменателя до множив обе части на 4, получим:
2+ 8≤
Далее раскроим скобки и формулы квадрата суммы и квадрата разности:
2- 4x+2+8+ 16x+8 ≤ 9+6x+1
Приведем подобные слагаемые:
+6x+9≤ 0
Отсюда видно, что дискриминант равен 0, следовательно неравенство имеет один единственный корень:
x= -3
Ответ: -3.
≥ 1+ nx
Рассмотрим задачи на неравенство Бернулли:
+ = 2
Решение:
Используя неравенство Бернулли получаем:
+ ≤ 1+ + 1- = 2
Решение неравенства достигается тогда и только тогда, когда , то есть
x = 1, x = -1.
Ответ: 1,-1.
Итак, для начала раскроем скобки в левой части неравенства, получим:
1 + (a1 + . . . + an) + (a1a2 + . . . + an-1an) + (a1a2a3 + ...+ an-2 an-1an) + . .+ a1a2 . . +an.
(1 + a1) . . . (1 + an) < 1 + 2(a1 + . . . + an).
= 1 + 2·(a1 + . . . + ak + ak+1).
+ ≤
Доказательство:
Из неравенства видно, что
+ 2a.
Доказать: + + > x + y + z.
3.4 Неравенство Коши- Буняковского (10-11 класс)
Теорема. Для любых наборов чисел: ,,
, ,
Верно неравенство:
│ + │ ≤ · (1)
≤
Рассмотрим функцию:
f (t) = +
t – переменная , остальные-параметры.
f(t) = + = A – 2Ct + B.
A = 0 тогда и только тогда, когда === 0 и неравенство (1) очевидно.
A ≠ 0 тогда и только тогда, когда A > 0 и f – квадратичная функция с графиком возрастающим вверх.
Так как , f(t) ≥ 0, то уравнение f(t) = 0 имеет не более одного корня и дискриминант меньше или равен нулю.
D = 4 – 4 AB = 4 ≤ 0 , то есть ≤ AB.
Замечание. Во многих задачах , важным является несколько само неравенство Коши-Буняковского, сколько условие равенства в этом неравенстве.
Равенство в неравенстве (1) может достигаться тогда и только тогда, когда существует : f () = 0.
+ + ….+ = 0.
= = =
Так же можно сказать ,что равенство будет соблюдаться , если хотя бы один из двух числовых наборов является вырожденным:
=== 0
=== 0
Задача 1.
Дано: x+y+z = 1.
Доказать, что x2 + y2 + z2 ≥
Доказательство:
Согласно неравенству Коши-Буняковского:
1 = 1·x + 1·y + 1·z ≤ · =
Следовательно x2 + y2 + z2 ≥ .
Задача 2.
Доказать, что
Доказательство:
На основе применения неравенства можно записать, что
≤
Так как =55, то ≤ 550
Или ≤ .
Задача 3.
Известно, что + = 1.
Найти: min ( 3x + 4y+5z)
max( 3x + 4y+5z)
Решение:
│( 3x + 4y+5z)│ ≤ = = 5
- 5 ≤ 3x + 4y+5z ≤ 5.
Чтобы сделать вывод, что - 5 и 5 искомые значения , необходимо найти x, y, z для которых они достигаются. Это можно сделать с помощью условий неравенства Коши-Буняковского:
= =
+ = 1.
y = x
z = x
+ + = 1
=
Отсюда, x = ±
Если выбирать знак «+» , то будет достигаться max значение, если знак «-» , то min значение.
Ответ: min - 5 , max 5.
3.5 Неравенство Йенсена (11 класс)
Рассмотрим еще такой общий подход к доказательству неравенств с использованием свойств выпуклости ( вогнутости) функций. Хорошо известно , что для всякой выпуклой (вогнутой) функции f : [a;b] R будет верно неравенство Йенсена:
f (+..+) ≤ +…+ (1)
f (+..+) ≥ +…+
, ,…, € [a;b];
+…+ = 1
0
Выпуклость (вогнутость) функций удобно проверять с помощью второй производной f, если f достаточно гладкая:
f ′′ (x) > 0
f ′′ (x) < 0, x € [a;b];
Проверить выпуклость (вогнутость) f, можно на базе (1).
Задача.
Доказать неравенство:
≤
Доказательство:
Пусть f(x) = ln sin .
Для проверки вогнутости f , найдем f ′′ (x):
f ′′ (x) = ′ = · <0
,,ɤ- углы треугольника.
Т.е + +ɤ=180◦
f ≥ (f()+f()+f())
ln sin 60◦ ln sin sin sin
3ln ≥ln..
ln ≥ ln sin
sin sin sin ≤
= 3 ≥ ln
Следовательно, ≤ .
4.Метод математической индукции ( 8-9 класс)
Индукция – это рассуждение от частного к общему.
Метод математической индукции удобно применять ,если требуется доказать какую-то последовательность утверждений . И оказывается , что доказательство этой последовательности равносильно доказательству всего двух таких утверждений:
1) базис: .
2) для любого k из следует
В некоторых задачах шаг 2) заменяют на следующий: если верно , при l ≤ k , то верно .
шаг 1) называют базисом индукции.
шаг 2) индуктивным переходом.
С методом математической индукции учащихся знакомят в 9-10 классе.
Докажем несколько неравенств методом математической индукции:
Задача 1.
Найдите все n € N : > , n= 1,2,3…
Докажем, при n ≥ 5 , > ;
1. Базис = 32 > = 25
2. Пусть при n=k : >
3. Докажем, при n = k+1 : >
= 2· >
= – 2k -1 = – 2k-1= - 2k + 1- 2= – 2.
Так как k ≥ 5, то ≥ 16 > 2.
Следовательно, .
Ответ: при n=1, а так же n ≥ 5.
Задача 2.
Доказать, что для любого n € N, n ≥2 : ab ≥ 0.
+
Доказательство :
1. Базис : n=2:
2() ≥ – верно.
2. Пусть n=k:
() ≥
3. Докажем, что n=k+1:
() ≥
= (a+b) ≤ · (a+b) · () = · ( +a+ + · – (a+ ) = - + - a = (a-b) + (b-a) = (a-b)).
При a>b , следует, что , значит (a-b)) > 0.
При a<b , следует, что , значит (a-b)) > 0.
a+ ≤ .
Данный метод осуществляется следующим образом:
1. Оценка. Убеждаемся , что данное неравенство выполняется: B ≥ 𝝰
5 6 7 1 2
3 4
40 < x + y + z < 48
4x −8y = − 132
x= 2y – 33
6.Самостоятельно составленные задачи
Задача1.
Решить уравнение:
+ = +
· + · 4 ≥ +
Ведем замену:
x - 2 = t
2 – x = -t
Получим:
= +
= 2
+ = 2
x - 1 + 3 – x + 2 = 4
2 = 2
= 1
(x-1)(3-x) = 1
3x - – 3 + x – 1= 0
- + 4x – 4 = 0
– 4x + 4 = 0
= 0
x = 2, следовательно t=0.
Ответ: x = 2.
Задача 2.
1 + πx = +
1 ≤ 1 + πx ≤ 2
+ ≤ · = 2
3 ≤ x ≤ 6
При x = 4 ( Из условия равенства в неравенстве Коши-Буняковсекого для корней)
Получаем:
1 + 4π = 2
+ = 2.
Ответ: 2.
Задача 3.
Доказать неравенство:
10 + 2 + 5 ≥ 2xy + 4yz + 6xz
– 2xy + + – 4yz + 4 + – 6xz + 9≥ 0
Свернем данное неравенство в квадрат разности, получим:
+ + ≥ 0
Следовательно , 10 + 2 + 5 ≥ 2xy + 4yz + 6xz.
Задача 4.
Решить уравнение:
+ = │x - 2│ + │x - 4│
Решение:
ОДЗ x € [ 2;4 ]
Докажем, что левая часть меньше или равна 2:
+ ≤ 2
Из неравенства Коши-Буняковского, получаем:
1· + 1 · ≤ + = 2 (*)
Докажем, что правая часть больше или равна 2:
│x - 2│ + │x - 4│= │2 - x│ + │x - 4│≥ │2 – x + x - 4│= 2
Так как, │a + b│ ≤ │a│ + │b│ для любых a и b.
Итак, левая часть не больше 2, а правая – не меньше 2. Поэтому + = │x - 2│ + │x - 4│= 2. Это означает, что в (*) достигается равенство , что возможно только при x – 2 = 4 – x = 1 или x = 3.
Проверка показывает, что x = 3 подходит.
Ответ: x = 3.
Заключение
В результате проделанной работы был подобран материал по теме «Доказательство неравенств во внеклассной работе со школьниками», а именно: теоретические сведения по неравенствам Йенсена, Коши, Коши-Буняковского и Бернулли, задачи, в решениях которых используются эти неравенства.
На основании выбранной учебной и методической литературы были выделены основные моменты, связанные с проведением школьных математических олимпиад. Подробно раскрыты цели и структура олимпиад по математике в школе. Сделан вывод, что математические олимпиады являются достаточно популярной формой организацией внеурочной работы в школе. Раскрыто содержание теоретических вопросов, связанных с понятиями и методами решений неравенств, также рассмотрены основные классические неравенства, которые используются при решении задач математических олимпиад. Все это было собрано и оформлено в виде электронного учебника. Учебник позволяет самостоятельно изучать эту тему, получая знания на достаточном уровне, а также помогает строить логические цели рассуждения; делать выводы о выборе решения, анализировать и оценивать полученные результаты.
Список литературы
1. Выгодский М.Я. Справочник по элементарной математике. – М.: Наука, 1972. – 416 с.
2. Ижболдин О., Курляндчик Л. Неравенство Йенсена. – Научно-популярный физико-математический журнал «Квант», №4, 1990. – 95с.
3. Конюшков А. Неравенство Коши-Буняковского. – Научно-популярный физико-математический журнал «Квант», №8, 1987. – 110с.
4. Супрун В.П. Избранные задачи повышенной сложности по математике. – Мн.: Полымя, 1998. – 108 с. – («В помощь абитуриентам и студентам»)
5. Соловьев Ю.П. Неравенства (Серия: «Библиотека «Математическое просвещение»») М.: МЦНМО, 2005. — 16 с.:
6. ЕГЭ 2018, Математика, Большой сборник тематических заданий, Профильный уровень, Ященко И.В