Исследовательская работа: "Симметрия в природе" | Антипов Д.В.. Работа №303781
Понятие симметрии встречается уже у истоков человеческого знания. На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой — к их нарушению.
Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.Актуальность проекта обусловлена тем, что симметрия окружает человека, находя своё проявление как в живой, так и в неживой природе. Объяснение законов симметрии важно для понимания красоты, гармонии, жизни.
Цель индивидуального проекта является описать симметрию в природе.
Задачи проекта:
1. Описать Понятие и виды симметрии;
2. Рассмотреть симметрия в живой природе.
Введение
Понятие симметрии встречается уже у истоков человеческого знания. На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой — к их нарушению.
Симметрия пространственных отражений говорит о том, что если существует некоторая частица, то обязательно должна существовать и частица, получаемая зеркальным отражением исходной. Если осуществляется некоторый процесс, то процесс, соответствующий его отражению в зеркале, также должен быть физически возможным.
Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.
Актуальность проекта обусловлена тем, что симметрия окружает человека, находя своё проявление как в живой, так и в неживой природе. Объяснение законов симметрии важно для понимания красоты, гармонии, жизни.
Цель индивидуального проекта является описать симметрию в природе.
Задачи проекта:
Описать Понятие и виды симметрии
;
Рассмотреть
с
имметрия
в
живой
природе
.
Глава 1. Понятие и виды симметрии
1.1 Понятие симметрии
Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным нарушением определенных видов симметрий.
«Симметрия» (от греческого symmetria - «соразмерность») - понятие, означающее сохраняемость, повторяемость, «инвариантность» каких-либо особенностей структуры изучаемого объекта при проведении с ним определенных преобразований, «трансформаций». Если давать более академичное определение, то симметрия — это структурная инвариантность относительно заданных трансформаций объекта. Причем, как теперь стало понятно, набор элементарных типовых трансформаций весьма невелик. К ним, прежде всего, относят повороты, переносы и отражения. Так, смотрясь в зеркало, мы получаем симметричное отображение, т.е. образ, в котором сохранено много общего с оригиналом. По принципам симметрии построены многочисленные орнаменты и узоры. Роскошные и разнообразные узоры симметрии характерны для живой природы: животных и растений. В искусстве свойство симметрии традиционно изучается с помощью такого специального понятия, как «гармония».
Слово «симметрия» имеет два значения. В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое.
Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей.
«Симметричное обозначает нечто, обладающее хорошим соотношением пропорций, а симметрия – тот вид согласованности отдельных частей, который объединяет их в целое. Красота тесно связана с симметрией», - писал Г. Вейль в своей книге «Этюды о симметрии». Он ссылается при этом не только на пространственные соотношения, т.е. геометрическую симметрию. Разновидностью симметрии он считает гармонию в музыке, указывающую на акустические приложения симметрии.
Зеркальная симметрия в геометрии относится к операциям отражения или вращения. Она достаточно широко встречается в природе. Наибольшей симметрией в природе обладают кристаллы (например, симметрия снежинок, природных кристаллов), однако не у всех из них наблюдается зеркальная симметрия. Известны так называемые оптически активные кристаллы, которые поворачивают плоскость поляризации падающего на них света.
В общем случае симметрия выражает степень упорядоченности какой-либо системы или объекта. Например, круг более упорядочен и, следовательно, симметричен, чем квадрат. В свою очередь, квадрат более симметричен, чем прямоугольник. Другими словами, симметрия – это неизменность (инвариантность) каких-либо свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Например, окружность симметрична относительно любой прямой (оси симметрии), лежащей в ее плоскости и проходящей через центр, она симметрична и относительно центра. Операциями симметрии в данном случае будут зеркальное отражение относительно оси и вращение относительно центра окружности.
В широком смысле симметрия – это понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние, относительную устойчивость, пропорциональность и соразмерность между частями целого.
Противоположным понятием является понятие асимметрии, которое отражает существующее в объективном мире нарушение порядка, равновесия, относительной устойчивости, пропорциональности и соразмерности между отдельными частями целого, связанное с изменением, развитием и организационной перестройкой. Уже отсюда следует, что асимметрия может рассматриваться как источник развития, эволюции, образования нового.
Симметрия может быть не только геометрической. Различают геометрическую и динамическую формы симметрии (и, соответственно, асимметрии).
К геометрической форме симметрии (внешние симметрии) относятся свойства пространства – времени, такие как однородность пространства и времени, изотропность пространства, эквивалентность инерциальных систем отсчета.
К динамической форме относятся симметрии, выражающие свойства физических взаимодействий, например, симметрии электрического заряда, симметрии спина и т.п. (внутренние симметрии). Современная физика, однако, раскрывает возможность сведения всех симметрий к геометрическим симметриям.
Калибровочные симметрии. Важным понятием в современной физике является понятие калибровочной симметрии. Калибровочные симметрии связаны с инвариантностью относительно масштабных преобразований. Под калибровкой, таким образом, первоначально понималось именно изменение уровня или масштаба. Так в СТО физические законы не изменяются относительно переноса (сдвига) системы координат. Траектории движения остаются прямолинейными, пространственный сдвиг остается одинаковым у всех точек пространства. Таким образом, здесь работают глобальные калибровочные преобразования.
Формы симметрии являются одновременно и формами асимметрии. Так геометрические асимметрии выражают неоднородность пространства – времени, анизотропность пространства. Динамические асимметрии проявляются в различиях между протонами и нейтронами в электромагнитных взаимодействиях, различие между частицами и античастицами (по электрическому, барионному зарядам).
1.2 Виды симметрии
В древности слово симметрия употреблялось в значении гармония, красота. Действительно, в переводе с греческого это слово означает соразмерность, пропорциональность, одинаковость в расположении частей.
Осевая симметрия. Две точки А и В называются симметричными относительно прямой m, если эта прямая проходит через середину отрезка АВ и перпендикулярна к нему. Каждая точка прямой m считается симметричной самой себе.
Центральная симметрия.
Две точки А и А1 называются симметричными относительно точки О, если О - середина отрезка АА1. Точка О считается симметричной самой себе.
Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.
Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма- точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии у прямой их бесконечно много - любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник.
В конформной (круговой) симметрии главным преобразованием является инверсия относительно сферы. Для простоты возьмём круг радиуса с центром в точке O. Конформная симметрия обладает большой общностью. Все известные преобразования симметрии: зеркальные отражения, повороты, параллельные сдвиги представляют собой лишь частные случаи конформной симметрии.
Главная особенность конформного преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу и всегда переходит в сферу другого радиуса.
Известно, что кристаллы какого-либо вещества могут иметь самый разный вид, но углы между гранями всегда постоянны.
Зеркальная симметрия. Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична. Сначала представляется, что параллельно одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль.
В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо.
Если вы поместите буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале.
Винтовая симметрия. В пространстве существуют тела, обладающие винтовой симметрией, то есть совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если данный угол поделить на 360 градусов - рациональное число, то поворотная ось оказывается также осью переноса.
Глава 2. Симметрия в живой природе
2.1 Асимметрия и симметрия в природе
Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.
В живой природе огромное большинство живых организмов обнаруживает различные виды симметрии (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.
Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, радиальная, осевая) Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.
Асимметрия присутствует уже на уровне элементарных частиц и проявляется в абсолютном преобладании в нашей Вселенной частиц над античастицами. Известный физик Ф. Дайсон писал: "Открытия последних десятилетий в области физики элементарных частиц заставляют нас обратить особое внимание на концепцию нарушения симметрии. Развитие Вселенной с момента ее зарождения выглядит как непрерывная последовательность нарушений симметрии. В момент своего возникновения при грандиозном взрыве Вселенная была симметрична и однородна. По мере остывания в ней нарушается одна симметрия за другой, что создает возможности для существования все большего и большего разнообразия структур. Феномен жизни естественно вписывается в эту картину. Жизнь — это тоже нарушение симметрии"
Молекулярная асимметрия открыта Л. Пастером, который первым выделил "правые" и "левые" молекулы винной кислоты: правые молекулы похожи на правый винт, а левые - на левый. Такие молекулы химики называют стереоизомерами.
Молекулы стереоизомеры имеют одинаковый атомный состав, одинаковые размеры, одинаковую структуру - в то же время они различимы, поскольку являются зеркально асимметричными, то есть объект оказывается нетождественным со своим зеркальным двойником. Поэтому здесь понятия "правый-левый" - условны.
В настоящее время хорошо известно, что молекулы органических веществ, составляющие основу живой материи, имеют асимметричный характер, то есть в состав живого вещества они входят только либо как правые, либо как левые молекулы. Таким образом, каждое вещество может входить в состав живой материи только в том случае, если оно обладает вполне определенным типом симметрии. Например, молекулы всех аминокислот в любом живом организме могут быть только левыми, сахара ~ только правыми. Это свойство живого вещества и его продуктов жизнедеятельности называют дисимметрией. Оно имеет совершенно фундаментальный характер. Хотя правые и левые молекулы неразличимы по химическим свойствам, живая материя их не только различает, но и делает выбор. Она отбраковывает и не использует молекулы, не обладающие нужной ей структурой. Как это происходит, пока не ясно. Молекулы противоположной симметрии для нее яд.
Если бы живое существо оказалось в условиях, когда вся пища была бы составлена из молекул противоположной симметрии, не отвечающей дисимметрии этого организма, то оно погибло бы от голода. В неживом веществе правых и левых молекул поровну. Дисимметрия - единственное свойство, благодаря которому мы можем отличить вещество биогенного происхождения от неживого вещества. Мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличить живое от неживого. Таким образом, асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. Для неживой материи характерно преобладание симметрии, при переходе от неживой к живой материи уже на микроуровне преобладает асимметрия. В живой природе асимметрию можно увидеть всюду. Очень удачно это подметил в романе "Жизнь и судьба" В. Гроссман: "В большом миллионе русских деревенских изб, нет и не может быть двух неразличимо схожих. Все живое - неповторимо.
Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте. На принципе симметрии основан метод аналогий, предполагающий отыскание общих свойств в различных объектах. На основе аналогий создаются физические модели различных объектов и явлений. Аналогии между процессами позволяют описывать их общими уравнениями.
2.2 Симметрия растений
Изображения на плоскости многих предметов окружающего нас мира имеют ось симметрии или центр симметрии. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля.
Среди цветов наблюдаются поворотные симметрии разных порядков. Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называется элементарным углом поворота оси. Этот угол для различных цветов не одинаков. Для ириса он равен 1200, для колокольчика – 720, для нарцисса – 600. Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдет совмещение при повороте на 3600. Те же цветы ириса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно.
Особенно часто среди цветов встречается симметрия пятого порядка. Это такие полевые цветы как колокольчик, незабудка, зверобой, лапчатка гусиная и др.; цветы плодовых деревьев – вишня, яблоня, груша, мандарин и др., цветы плодово-ягодных растений – земляника, ежевика, малина, шиповник; садовые цветы – настурция, флокс.
Пространстве существуют тела, обладающие винтовой симметрией, то есть совмещающиеся со своим первоначальным положением после поворота на угол вокруг оси, дополненного сдвигом вдоль той же оси.
Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса, что буквально означает строение листа. Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.
2.3 Симметрия животных
Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды – от простейших до самых сложных. Симметрия в строение животных – почти общее явление, хотя почти всегда встречаются исключения из общего правила.
Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевая) или билатеральную (двусторонняя), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного.
В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят две или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.
Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.
Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двустороннесимметричные).
При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны – брюшная и спинная – друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Например, черви, членистоногие, позвоночные. У большинства многоклеточных (у человека в том числе) другой тип симметрии – двусторонняя. Левая половина их тела — это как бы «отражённая в зеркале правая». Этот принцип, однако, не относится к отдельным внутренним органам, что демонстрирует, например, расположение печени или сердца у человека. Плоский червь планария имеет двустороннюю симметрию. Если разрезать его вдоль оси тела или поперёк, из обеих половинок вырастут новые черви. Если же измельчить планарию как-нибудь иначе — скорее всего ничего не выйдет.
Можно сказать также, что каждое животное (будь то насекомое, рыба или птица) состоит из двух энантиоморфов – правой и левой половин. Энантиоморфы – пара зеркально асимметричных объектов (фигур), являющихся зеркальным изображением один другого (например, пара перчаток). Иными словами – это объект и его зазеркальный двойник при условии, что сам объект зеркально асимметричен.
Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.
Губки и пластинчатые не проявляют симметрию.
Заключение
Сфера влияния симметрии (а значит и ее антипода - асимметрии) поистине безгранична. Природа – наука - искусство. Всюду видим противоборство, а часто и единство двух великих начал - симметрии и асимметрии, которые во многом и определяют гармонию природы, мудрость науки и красоту искусства.
Симметрия, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства. Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.
Симметрия, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства.
Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.
Можно надеяться, что на основе биологических законов сохранения, разнообразных инвариантов, симметрии законов живой природы относительно тех или иных преобразований рано или поздно удастся глубже проникнуть в сущность живого, объяснить ход эволюции, её вершины, тупики, предсказать неизвестные сейчас ветви, теоретически возможные и действительные числа типов, классов, семейств…организмов.
Список использованных источников
Жёлудев
И.С.
Симметрия
и
её
приложения.
–
М.:
Энергоатомиздат,
2019
.
Карпенков
С.Х.
Концепция
современного
естествознания:
Учебник
для
вузов.
–
М.:
ЮНИТИ,
2018
.
«Концепции
современного
естествознания».
Лекции
для
студентов
заочного
отделения
УГАТУ.
Уфа,
2020
.
Сонин
А.С.
Постижение
совершенства:
симметрия,
асимметрия,
диссимметрия
,
антисимметрия.
–
М.:
ЗНАНИЕ,
2019
.
Трофимов
В.
Введение
в
геометрическом
многообразии
с
симметриями
М.:
МГУ,
2018
.
Урманцев
Ю.А.
Симметрия
природы
и
природа
симметрии.
–
М.:
МЫСЛЬ,
2020
.
Харитонов
А.С.
Феномен
симметрии.
-
ЮНИТИ,
2019
.
Хорошавина
С.Г.
Курс
лекций
«Концепция
современного
естествознания».
Ростов
н/Д:
Феникс,
2018
.
Шубников
А.В.
Избранные
труды
по
кристаллографии.
–
М.:
НАУКА,
2019
.
Интернет-ресурсы:
www
.
numanities.edu.ru
;
www.nrc.edu.ru
;
www
.
toe
-
krsh
.
narod
.
ru
.