Итоговый проект по математике за курс основой школы по теме "Фракталы" | Зубкова Ангелина Дмитриевна . Работа №310817. Номер работы: №310817
Что такое фрактал
Фрактал — термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.
Но само слово «фрактал» не является математическим термином. Обычно так называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств:
- обладает сложной структурой при любом увеличении;
- является (приближенно) самоподобной;
- обладает дробной хаусдорфовой (фрактальной) размерностью1
- может быть построена рекурсивными процедурами2.
История возникновения фракталов
Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (
Benoît
B.
Mandelbrot
). Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово
fractus
из латыни, где оно буквально означает «ломанный» или «дробленный».
Что такое фрактал
Фрактал — термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.
Но само слово «фрактал» не является математическим термином. Обычно так называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств:
обладает сложной структурой при любом увеличении;
является (приближенно)
самоподобной
;
обладает дробной
хаусдорфовой
(фрактальной) размерностью1
может быть построена рекурсивными процедурами2.
Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.
Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина
каждый раз повторялась.
При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.
Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений.
Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (
GastonMauriceJulia
).
Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной3 циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел.
Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график.
Впоследствии это изображение было раскрашено (например, один из способов
окраш
ивания
цветом — по числу итераций) и стало одним из самых популярных изображений, какие только были созданы человеком.
Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок.
Геометрические фракталы
История фракталов началась с геометрических фракталов, которые исследовались математиками в XIX веке. Фракталы этого класса — самые наглядные, потому что в них сразу видна
самоподобность
. Геометрические фракталы – фракталы, строящиеся с помощью некоторой ломаной, называемой генератором.
Фракталы этого типа строятся поэтапно. Сначала изображается основа. Затем некоторые части основы заменяются на фрагмент. На каждом следующем этапе части уже построенной фигуры, аналогичные замененным частям основы, вновь заменяются на фрагмент, взятый в подходящем масштабе. Всякий раз масштаб уменьшается. Когда изменения становятся визуально незаметными, считают, что построенная фигура хорошо приближает фрактал и дает представление о его форме. Для получения самого фрактала нужно бесконечное число этапов. Меняя основу и фрагмент, можно получить много разных геометрических фракталов.
Геометрические фракталы хороши тем, что, с одной стороны, являются предметом достаточного серьезного научного изучения, а с другой стороны, их можно «увидеть» — даже человек, далекий от математики, найдет в них что-то для себя. Такое сочетание редко в современной математике, где все объекты задаются с помощью непонятных слов и символов. Оказывается, многие геометрические фракталы можно нарисовать буквально на листочке бумаги в клетку. Сразу оговорюсь, что все получаемые изображения являются лишь конечными приближениями бесконечных по своей сути фракталов. Но всегда можно нарисовать такое приближение, что глаз не будет различать совсем мелкие детали и наше воображение сможет создать верную картину фрактала. Например, имея достаточно большой лист миллиметровой бумаги и запас свободного времени, можно вручную нарисовать такое точное приближение к ковру
Серпинского
, что с расстояния в несколько метров невооруженный глаз будет воспринимать его как настоящий фрактал. Компьютер позволит сэкономить время и
бумагу
и при этом еще увеличить точность рисования.
Ещё одним типичным примером геометрического фрактала является кривая Коха. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем
средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д… Предельная кривая и есть кривая Коха.
Если в качестве основы взять равносторонний треугольник, то получим треугольник Серпинского4. Равносторонний треугольник делится прямыми, параллельными его сторонам, на 4 равных равносторонних
Ковёр
Серпинского
треугольника. Из треугольника удаляется центральный треугольник. Получается множество, состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество, состоящее из 9 равносторонних треугольников «второго ранга» и так далее.
Кривая Коха
Алгебраические фракталы
Вторая большая группа фракталов - алгебраические. Алгебраические фракталы- фракталы, которые строят на основе алгебраических формул, иногда весьма простых.
Первые исследования в этом направлении относятся к началу XX века и связаны с именами французских математиков Гастона Жюлиа и Пьера Фату. В 1918 году вышел почти
двухсотстраничный
труд Жюлиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жюлиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной
иллю
страции
, так что оценить красоту открытых объектов было невозможно. Несмотря на
то
что это работа прославила Жюлиа среди математиков того времени, о ней довольно быстро забыли.
В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим
байкам, которыми автор умело, разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди
нематематиков
во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными то появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.
Существует много методов получения алгебраических фракталов. Классическим примером алгебраического фрактала является множество Мандельброта. Алгоритм его построение весьма прост. В его основе лежит простое многократное выражение:
Z[i+1] = Z[i] * Z[i] + C,
где
Zi
и C — комплексные переменные. Многократный расчет функции выполняют для каждой стартовой точки C прямоугольной или квадратной области до тех пор, пока не будет выполнено определенное условие:
• Z[i] стремится к
бeсконечности
;
• Стремится к нулю.
• Приняв несколько фиксированных значений, не выходит за их пределы.
• Хаотичное поведение.
Множеству Мандельброта принадлежат только те точки, которые в течение бесконечного числа итераций не уходят в бесконечность (эти точки окрашиваются в черный цвет).
Не менее популярным является метод построение фракталов, основанный на комплексной динамике. В результате образуются
биоморфы
, фракталы напоминающие живые организмы.
Множество Мандельброта