«Методы обучения детей математике» | Ольга Николаевна Григорьева. Работа №320652
Математика - один из наиболее сложных предметов в дошкольном цикле. От эффективности математического развития ребенка в дошкольном возрасте зависит успешность обучения математике в начальной школе. Математика играет огромную роль в умственном воспитании и в развитии интеллекта. В математике заложены огромные возможности для развития мышления детей в процессе их обучения с самого раннего возраста. Дети усваивают различные понятия в дошкольном возрасте, опираясь на чувственный опыт и житейские представления. Они осваивают счёт в повседневной деятельности, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и размеров. Ребенок, не осознавая того, практически включается в простую математическую деятельность.
Частное учреждение образовательная организация высшего образования "Омская гуманитарная академия"
КОНТРОЛЬНАЯ РАБОТА на тему:
«Методы обучения детей математике»
по учебной дисциплине: Теории и технологии развития математических представлений у дошкольников
Выполнил (а): Григорьева О.Н.
Направление подготовки:
Педагогическое образование
Форма обучения: заочная
Оценка: ____________________________
____________________________ Подпись
Фамилия И.О. “____” ________________20___ г.
Омск, 2020
Содержание
Введение…………………………………………………………………………...3
1. Формы организации обучения детей элементам математики……………….4
1.1 Методы обучения детей математике………………………………………...5
1.2 Роль дидактических средств в математическом развитии детей…………14
Заключение……………………………………………………………………….19
Список использованных источников…………………………………………...20
Введение
Математика - один из наиболее сложных предметов в дошкольном цикле. От эффективности математического развития ребенка в дошкольном возрасте зависит успешность обучения математике в начальной школе. Математика играет огромную роль в умственном воспитании и в развитии интеллекта. В математике заложены огромные возможности для развития мышления детей в процессе их обучения с самого раннего возраста. Дети усваивают различные понятия в дошкольном возрасте, опираясь на чувственный опыт и житейские представления. Они осваивают счёт в повседневной деятельности, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и размеров. Ребенок, не осознавая того, практически включается в простую математическую деятельность.
Запас заученных знаний кончается очень быстро (через месяц-два), и несформированность собственного умения продуктивно мыслить (то есть самостоятельно выполнять указанные выше мыслительные действия на математическом содержании) очень быстро приводит к появлению "проблем с математикой". Одной из основных причин подобных трудностей является потеря интереса к математике как предмету. Не все дети имеют склонности и обладают математическим складом ума. Чтобы школьник не испытывал трудности с первых уроков и ему не пришлось учиться с нуля, в дошкольный период педагоги стараются на занятиях помочь детям освоить не только первый десяток.
Очень большая работа идет по развитию умений, как сравнение и обобщение, выявление простейших изменений объектов по форме и величине, умение оперировать свойствами объектов и чисел. Одной из наиболее важных и актуальных задач подготовки детей к школе является развитие логического мышления и познавательных способностей дошкольников.
1. Формы организации обучения детей элементам математики
Одним из существенных компонентов процесса обучения являются формы его организации. Разнообразие форм обучения определяется количеством обучающихся, местом и временем проведения занятий, способами деятельности детей, а также способами руководства этой деятельностью со стороны педагога.
Различают индивидуальную, коллективную и групповую (дифференцированную) формы обучения:
Индивидуальная форма обучения заключается в том, что ребенок приобретает знания, выполняет различные задания, имея возможность получения при этом непосредственной или косвенной помощи со стороны взрослого. У индивидуальной формы обучения есть как положительные, так и отрицательные моменты. Положительным следует считать, что индивидуальное обучение обеспечивает накопление личного опыта, развитие самостоятельности и активности ребенка, переживание положительных эмоций от общения непосредственно с педагогом. Оно, более результативно, нежели коллективное обучение. При индивидуальном обучении сотрудничество ребенка со взрослым позволяет достигать цели. Обучая одного ребенка, взрослый легко может увидеть (определить) его «зону ближайшего развития». А затем это новое образование входит в фонд его «актуального развития». В индивидуальном обучении недостаточно реализуются возможности сотрудничества и соперничества со сверстниками, которые являются важным эмоциональным фоном учения. [1.144c]
При коллективной форме обучения один педагог работает одновременно с целой группой. Взаимная помощь и взаимное обучение. Недостатком коллективной формы обучения является то, что недостаточно учитываются так называемые индивидуальные различия. У разных детей - разный темп работы, разный уровень способностей, разное отношение к деятельности и т.п.
Коллективная форма обучения в детском саду занимает ведущее место, в форме занятий со всей группой детей. Традиционно обучение детей осуществляется по единым программам и единым учебным пособиям. Дети внутри одного возраста имеют значительные индивидуальные различия, поэтому организация обучения должна строиться с учетом этих различий.
Учебно-воспитательный процесс, для которого характерен учет типичных и индивидуальных различий уровней развития детей, принято называть дифференцированным, и осуществляется по критериям: по способностям или не способностям к обучению, по интересам, по объему материала и степени его сложности, по степени самостоятельности и темпу продвижения в обучении. Деление на подгруппы позволяет регулировать объем и сложность изучаемого материала, корректировать количество занятий в неделю (месяц). Подгруппа детей с более низким уровнем возможностей (низкий уровень развития внимания, мышления, памяти, воображения) занимается 2-3 раза в неделю, но занятия несколько короче и количество программных познавательных задач меньше. Большая часть занятий организуется со всей группой детей, однако итоговые занятия предполагают дифференцированную (с подгруппами) форму организации. На коллективном занятии имеет место работа с отдельными детьми. Это может быть, как временное снижение требований, активная непосредственная помощь со стороны воспитателя детям, которые в ней нуждаются. Или, наоборот, предложение некоторым детям сложных, проблемных заданий, с учетом их возможностей и интересов.
Для детей младшего и среднего дошкольного возраста более естественно приобретение знаний, умений в игровой, конструктивной, двигательной, изобразительной деятельности. Рекомендуется один-два раза в месяц проводить интегрированные занятия: математика и рисование; математика и физкультура; конструирование и математика; аппликация и математика и т.д.
Методы обучения детей математике
Метод — это способ воспроизведения, средство познания изучаемого предмета. В основе методов лежат объективные законы действительности. Метод неразрывно связан с теорией. В педагогике метод характеризуется как целенаправленная система действий воспитателя и детей, соответствующих целям обучения, содержанию учебного материала, самой сущности предмета, уровню умственного развития ребенка.
В теории и методике математического развития детей термин «метод» употребляется в двух смыслах: широком и узком. Метод может обозначать исторически сложившийся подход к математической подготовке детей в детском саду (монографический, вычислительный и метод взаимно-обратных действий).
В педагогике существует концепция, которая базируется на использовании одного метода (монометода). К такой концепции относится теория поэтапного формирования умственной деятельности. Процесс формирования деятельности рассматривается как процесс передачи социального опыта. Это происходит не исключительно путем взаимодействия учителя с учащимися, а скорее через интериоризацию соответствующей деятельности, формирование ее сначала во внешней материальной форме, а затем преобразование во внутреннюю психическую деятельность. [2.160c]
При выборе методов учитываются:
— цели, задачи обучения;
— содержание формируемых знаний на данном этапе;
— возрастные и индивидуальные особенности детей;
— наличие необходимых дидактических средств;
— личное отношение воспитателя к тем или иным методам;
— конкретные условия, в которых протекает процесс обучения и др.
Практические методы (упражнения, опыты, продуктивная деятельность) наиболее соответствуют возрастным особенностям и уровню развития мышления дошкольников. Сущностью этих методов является выполнение детьми действий, которые состоят из ряда операций. Счет предметов: называть числительные по порядку, соотносить каждое числительное с отдельным предметом, показывая на него пальцем или останавливая взгляд на нем, последнее числительное соотносить со всем количеством, запоминать итоговое число. Излишнее использование практических методов, задержка на уровне практических действий может отрицательно сказываться на развитии ребенка.
Практические методы характеризуются прежде всего самостоятельным выполнением действий, применением дидактического материала. На базе практических действий у ребенка возникают первые представления о формируемых знаниях. Практические методы обеспечивают выработку умений и навыков, позволяют широко использовать приобретенные умения в других видах деятельности.
Наглядные и словесные методы в обучении математике не являются самостоятельными. Они сопутствуют практическим и игровым методам. Но это отнюдь не умаляет их значения в математическом развитии детей.
К наглядным методам обучения относятся: демонстрация объектов и иллюстраций, наблюдение, показ, рассматривание таблиц, моделей.
К словесным методам относятся: рассказывание, беседа, объяснение, пояснения, словесные дидактические игры. Часто на одном занятии используются разные методы в разном их сочетании.
Составные части метода называются методическими приемами. Основными из них, используемыми на занятиях по математике, являются: накладывание, прикладывание, дидактические игры, сравнение, указания, вопросы к детям, обследование, показ и т. д.
Широко распространенным является методический прием — показ. Этот прием является демонстрацией, он может характеризоваться как наглядно-практически-действенный. К показу предъявляются определенные требования: четкость и расчлененность; согласованность действия и слова; точность, краткость, выразительность речи. [3.174c]
Одним из существенных словесных приемов в обучении детей математике является инструкция, отражающая суть той деятельности, которую предстоит выполнить детям. В старшей группе инструкция носит целостный характер, дается до выполнения задания. В младшей группе инструкция должна быть короткой, нередко дается по ходу выполнения действий.
Особое место в методике обучения математике занимают вопросы к детям. Они могут быть репродуктивно-мнемические, репродуктивно-познавательные, продуктивно-познвательные. При этом вопросы должны быть точными, конкретными, лаконичными. Для них характерна логическая последовательность и разнообразие формулировок. В процессе обучения должно быть оптимальное сочетание репродуктивных и продуктивных вопросов в зависимости от возраста детей, изучаемого материала. Вопросы ценны тем, что они обеспечивают развитие мышления. Следует избегать подсказывающих и альтернативных вопросов.
Система вопросов и ответов детей в педагогике называется беседой. В ходе беседы воспитатель следит за правильным использованием детьми математической терминологии, грамотностью речи. Это сопровождается различными пояснениями. Благодаря пояснениям уточняются непосредственные восприятия детей. Воспитатель учит детей обследовать геометрическую фигуру и при этом поясняет: «Возьмите фигуру в левую руку — вот так, указательным пальцем правой руки обведите, покажите стороны квадрата (прямоугольника, треугольника), они одинаковы. У квадрата есть углы. Покажите углы». Воспитатель учит детей измерению, показ практических действий сопровождает пояснениями, как следует наложить меру, обозначить ее конец, снять ее, снова наложить. Потом показывает и рассказывает, как подсчитываются меры. Чем старше дети, тем большее значение в их обучении имеют проблемные вопросы и проблемные ситуации.
Проблемные ситуации возникают тогда, когда:
— связь между фактом и результатом раскрывается не сразу, а постепенно. При этом возникает вопрос: что это такое? (опускаем разные предметы в воду: одни тонут, а другие — нет);
— после изложения некоторой части материала ребенку необходимо сделать предположение (эксперимент с теплой водой, таянием льда, решение задач);
— использование слов «иногда», «некоторые», «только в отдельных случаях» служит своеобразными опознавательными признаками или сигналами фактов, или результатов (игры с обручами);
— для понятия факта необходимо сопоставить его с другими фактами, создать систему рассуждений, т. е. выполнить некоторые умственные операции (измерение разными мерами, счет группами и др.).
Многочисленные экспериментальные исследования доказали, что при выборе метода важным является учет содержания формируемых знаний. При формировании пространственных и временных представлений ведущими методами являются дидактические игры и упражнения. При ознакомлении детей с формой и величиной наряду с различными игровыми методами и приемами используются наглядные и практические.
Место игрового метода в процессе обучения оценивается по-разному. Разработана идея простейшей логической подготовки дошкольников, введения их в область логико-математических представлений (свойства, операции с множествами) на основе использования специальной серии «обучающих» игр. Эти игры ценны тем, что они актуализируют скрытые интеллектуальные возможности детей, развивают их. [4.256c]
Обеспечить всестороннюю математическую подготовку детей все-таки удается при умелом сочетании игровых методов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен.
Весь наглядный материал условно можно разделить на два вида: демонстрационный и раздаточный.
Демонстрационный отличается от раздаточного размера и назначением. Демонстрационный материал больше по размеру, а раздаточный — меньше.
Значение демонстрационного наглядного материала заключается в том, что с его помощью можно сделать процесс обучения интересным, доступным и понятным детям, создать условия, чувственную опору для формирования конкретных математических представлений, для развития познавательных интересов и способностей. Значение раздаточного наглядного материала заключается прежде всего в том, что он дает возможность придать процессу обучения действенный характер, включить ребенка непосредственно в практическую деятельность.
Средствами наглядности могут быть реальные предметы и явления окружающей действительности, игрушки, геометрические фигуры, карточки с изображением математических символов — цифр, знаков, действий; широко используется словесная наглядность — образное описание объекта, явления окружающего мира, художественные произведения, устное народное творчество и др. Характер наглядности, ее количество и место в учебном процессе зависят от цели и задач обучения, от уровня усвоения детьми знаний и умений, от места и соотношения конкретного и абстрактного на разных этапах усвоения знаний.
При формировании у детей начальных представлений о числе и счете в качестве наглядного материала широко используются разнообразные конкретные множества, при этом весьма существенно их разнообразие (множество предметов, их изображений, звуков, движений). Воспитатель обращает внимание детей на то, что множество состоит из отдельных элементов, оно может быть поделено на части (подмножество). Дети практически действуют с множеством, постепенно усваивая данное свойство множества при наглядном сравнении — количество.
Наглядный материал способствует пониманию детьми того, что любое множество состоит из отдельных групп предметов, которые могут пребывать в одинаковом и неодинаковом количественном соотношении, а это готовит их к усвоению счета с помощью слов числительных. Одновременно дети учатся раскладывать предметы правой рукой слева направо.
Овладевая счетом множеств, состоящих из разных предметов, дети начинают понимать, что число не зависит ни от размера предметов, ни от характера их размещения. Упражняясь в наглядном количественном сравнении множеств, дети на практике осознают соотношения между смежными числами (6 меньше 7, а 7 больше 6) и учатся устанавливать равенство. На следующем этапе обучения конкретные множества заменяются «числовыми фигурами», «числовой лесенкой» и др.
В качестве наглядного материала используются сюжетные картинки, рисунки. Рассматривание художественных картин дает возможность осознать, выделить, уточнить временные и пространственные отношения, характерные особенности величины, формы окружающих предметов.
В конце третьего — начале четвертого года жизни ребенок способен воспринимать множество, представленное с помощью символов, знаков (квадраты, кружки и др.). Использование знаков (символической наглядности) дает возможность выделять существенные признаки, связи и отношения в определенной чувственно-наглядной форме. Особое значение символическая наглядность имеет при обучении детей вычислительной деятельности (использование цифр, знаков арифметических действий, моделей), при формировании у них пространственных и временных представлений.
Без непосредственной практической ориентировки ребенка в пространстве невозможно формирование пространственных представлений и понятий. На определенном этапе обучения, когда необходимо понимание детьми пространственных отношений, более существенным является не практическая ориентировка в пространстве, а именно восприятие и понимание пространственные отношений с помощью графиков, схем, моделей.
Формирование у детей представлений и понятий о величине и форме просто невозможно без наглядности. Используются разнообразные фигуры как эталоны формы, графические и модельные изображения формы. Одной из наиболее распространенных форм наглядностей являются учебные таблицы. Использование таблиц имеет педагогический эффект лишь в том случае, если демонстрация их связана не только с пояснением воспитателя во время изложения нового материала, но и с организацией самостоятельной работы детей.
На занятиях по математике широко используются пособия-аппликации (таблица со сменными деталями, которые закрепляются на вертикальной или наклонной плоскости с помощью магнитиков или другими способами), фланелеграф. Эта форма наглядности дает возможность детям принимать активное участие в изготовлении аппликаций, делать учебные занятия более интересными и продуктивными. Пособия-аппликации динамичны, дают возможность варьировать, разнообразить модели. С помощью фланелеграфа удобно перегруппировывать геометрические фигуры, решать арифметические задачи и примеры.
К наглядности относятся и технические средства обучения (ТСО). Среди технических средств обучения математике наибольшее значение приобретают экранные средства — ТВ, экраны и др. Использование технических средств дает возможность полнее реализовать возможности воспитателя, использовать готовые изографические или печатные материалы. Воспитатели могут сами изготавливать наглядный материал, а также приобщать детей к этому. Материал изготавливается из бумаги, картона, поролона, папье-маше. В качестве счетного материала используется природный (каштаны, желуди, камушки). Чтобы этот материал имел эстетический вид, его покрывают красками и лаками. Для иллюстрации разных понятий, связанных с множествами предметов, используются универсальные множества. Наглядный материал должен соответствовать определенным требованиям:
- предметы для счета и их изображения должны быть известны детям, они берутся из окружающей жизни; -чтобы научить детей сравнивать количества в разных совокупностях, необходимо разнообразить дидактический материал, который можно было бы воспринимать разными органами чувств (на слух, зрительно, на ощупь);
- наглядный материал должен быть динамичным и в достаточном количестве; отвечать гигиеническим, педагогическим и эстетическим требованиям.
Особые требования предъявляются к методике использования наглядного материала. При подготовке к занятию воспитатель тщательно продумывает, когда (в какой части занятия), в какой деятельности и как будет использованный наглядный материал. Необходимо правильно дозировать наглядный материал. Негативно сказывается на результатах обучения как недостаточное его использование, так и излишки. Наглядность не должна использоваться только для активизации внимания. Необходимо глубже анализировать дидактические задачи и в соответствии с ними подбирать наглядный материал. [5.105c]
Дети получают начальные представления о тех или других свойствах, признаках объекта, то можно ограничиваться небольшим количеством средств. В младшей группе, знакомя детей с тем, что множество состоит из отдельных элементов, воспитатель демонстрирует множество колец на подносе. Этого бывает достаточно для одного занятия. При ознакомлении детей пятого года жизни с новой геометрической фигурой — треугольником — воспитатель демонстрирует разные по цвету, величине и форме треугольники (равносторонние, разносторонние, равнобедренные, прямоугольные). Без такого разнообразия невозможно выделить существенные признаки фигуры, т.е. количество сторон и углов, невозможно обобщить, абстрагироваться. Для того чтобы показать детям различные связи, отношения, необходимо объединять несколько видов и форм наглядности. При изучении количественного состава числа из единиц используются различные игрушки, геометрические фигуры, таблицы и другие виды наглядности на одном занятии. Способы использования наглядности в учебном процессе различные: демонстрационный, иллюстративный и действенный.
Демонстрационный способ использования наглядности характеризуется тем, что сначала воспитатель показывает, геометрическую фигуру, а потом вместе с детьми обследует ее.
Иллюстративный способ предполагает использование наглядного материала для иллюстрации, конкретизации информации воспитателя. При ознакомлении с делением целого на части воспитатель подводит детей к необходимости этого процесса, а потом практически выполняет деление.
Для действенного способа использования наглядного материала характерным является связь слова воспитателя с действием. Примером этого может быть обучение детей непосредственному сравнению множеств путем накладывания и прикладывания или обучение детей измерению, когда воспитатель рассказывает и показывает, как нужно измерять. На занятиях по математике используются несколько средств, поэтому очень важно продумывать место и порядок их размещения. Демонстрационный материал размещается в удобном для использования месте, в определенной последовательности. После использования наглядного материала его необходимо убрать, чтобы не отвлекал детей. С этой целью хорошо использовать салфетки, коробочки, ширмочки. Раздаточный материал детям младшей группы дают в индивидуальных конвертах, в коробках, на подносах; в старшей группе — на общем подносе для каждого стола. Необходимо научить детей пользоваться раздаточным материалом. Воспитатель следит, чтобы дети осознанно и самостоятельно выполняли практические действия, аккуратно брали материал правой рукой, размещали его соответственно заданиям, после работы с ним клали на место.
Эффективность обучения достигается соединением слова воспитателя, практических действий детей и различных средств наглядности, поскольку процесс формирования понятий неотделим от конкретных представлений, от формирования способов действий.
1.2 Роль дидактических средств в математическом развитии детей
В теории обучения (дидактике) особое место отводится средствам обучения и влиянию их на результат этого процесса. Под средствами обучения понимаются: совокупности предметов, явлений, знаки (модели), действия, а также слово, участвующие непосредственно в учебно-воспитательном процессе и обеспечивающие усвоение новых знаний и развитие умственных способностей. Средства обучения - это источники получения информации, это совокупность моделей самой различной природы. Различают материально-предметные (иллюстративные) модели и идеальные (мысленные) модели. В свою очередь, материально-предметные модели подразделяются на физические, предметно-математические (прямой и непрямой аналогии) и пространственно-временные. Среди идеальных различают образные и логико-математические модели (описание, интерпретация, аналогия).
Материально-предметные модели: приборы, таблицы, диапозитивы, диафильмы и др. Идеальные: дидактические, учебные, методические пособия.
Учитывая двухсторонний характер процесса обучения, А. П. Усова предложила свою классификацию средств обучения, выделив в ней деятельность педагога и ребенка. Дидактические средства делятся на две группы. Первая группа средств обеспечивает деятельность педагога и характеризуется тем, что взрослый ведет обучение в основном с помощью слова. Во второй группе средств обучающее воздействие передается дидактическому материалу и дидактической игре, построенной с учетом образовательных задач, т. е. наглядности и практических действий ребенка с ней. С помощью чего обеспечивается передача информации, — слово, наглядность, практическое действие. [6.159c]
Средства обучения обладают следующими основными функциями:
- реализуют принцип наглядности;
- репрезентируют сложные абстрактные математические понятия в доступные;
- ведут к овладению способами действий;
- способствуют накоплению чувственного опыта;
- дают возможность воспитателю управлять познавательной деятельностью ребенка;
- увеличивают объем самостоятельной познавательной деятельности детей;
- рационализируют, интенсифицируют процесс обучения.
Эти функции постоянно меняются в связи с совершенствованием теории и практики обучения детей. [9.392c]
Средство обучения выполняет свои определенные функции. Образ как средство обучения в основном обеспечивает развитие личного опыта ребенка, отраженного в представлениях; действие обеспечивает формирование умений и навыков; слово (воспитателя, ребенка и художественное слово) создает возможность формирования обобщенных представлений, абстрактных понятий. Понятие «образ» несколько шире, чем наглядность. Под ним понимаются не только разнообразные виды дидактического материала, но и те образы, которые возникают на основе представления памяти. Данная трактовка обусловлена тем, что при формировании некоторых абстрактных математических представлений обучение осуществляется на основе прошлого опыта ребенка, т. е. на основе тех образов, предметов, явлений, действий, которые закрепились в его сознании в процессе предыдущей практической деятельности.
Обучение математике в детском саду основывается на конкретных образах и представлениях. Конкретные представления подготавливают фундамент для формирования на их основе математических понятий. Без обогащения чувственного познавательного опыта невозможно полноценное владение математическими знаниями и умениями. Сделать обучение наглядным — это не только создать зрительные образы, но и включить ребенка непосредственно в практическую деятельность. На занятиях по математике в детском саду воспитатель в зависимости от дидактических задач использует разнообразные средства наглядности. Три обучении счету можно предложить детям реальные (мячи, каштаны, куклы) или условные (палочки, кружочки, кубики) объекты. При этом предметы могут быть разными по цвету, форме, величине. На основе сравнения разных конкретных множеств ребенок делает вывод об их количестве, равенстве или неравенстве. В этом случае главную роль играет зрительный анализатор. Эти же самые счетные операции можно выполнить, активизируя слуховой анализатор, предложив подсчитать количество хлопков, ударов в бубен и др. Можно считать, опираясь на тактильные, двигательные ощущения. [7.55c]
Использование наглядности в обучении математике необходимо. Наглядность не самоцель, а средство обучения. Неудачно подобранный наглядный материал отвлекает внимание детей, мешает усвоению знаний. Правильно подобранная наглядность повышает эффективность обучения, вызывает живой интерес у детей, облегчает усвоение и осознание материала.
Использование наглядности в педагогическом процессе детского сада способствует обогащению и расширению непосредственного чувственного опыта детей, уточнению их конкретных представлений и тем самым развитию любознательности, значение которой в учебной деятельности трудно переоценить. Весь наглядный материал условно можно разделить на два вида: демонстрационный и раздаточный. Демонстрационный отличается от раздаточного размера и назначением. Демонстрационный материал больше по размеру, а раздаточный — меньше.
Значение демонстрационного наглядного материала заключается в том, что с его помощью можно сделать процесс обучения интересным, доступным и понятным детям, создать условия, чувственную опору для формирования конкретных математических представлений, для развития познавательных интересов и способностей.
Значение раздаточного наглядного материала заключается прежде всего в том, что он дает возможность придать процессу обучения действенный характер, включить ребенка непосредственно в практическую деятельность.
Средствами наглядности могут быть реальные предметы и явления окружающей действительности, игрушки, геометрические фигуры, карточки с изображением математических символов — цифр, знаков, действий. Широко используется словесная наглядность — образное описание объекта, явления окружающего мира, художественные произведения, устное народное творчество и др. Характер наглядности, ее количество и место в учебном процессе зависят от цели и задач обучения, от уровня усвоения детьми знаний и умений, от места и соотношения конкретного и абстрактного на разных этапах усвоения знаний. При формировании у детей начальных представлений о числе и счете в качестве наглядного материала широко используются разнообразные конкретные множества, при этом весьма существенно их разнообразие (множество предметов, их изображений, звуков, движений). Множество состоит из отдельных элементов, оно может быть поделено на части (подмножество). Необходимо научить детей пользоваться раздаточным материалом. Для этого воспитатель следит, чтобы дети осознанно и самостоятельно выполняли практические действия, аккуратно брали материал правой рукой, размещали его соответственно заданиям, после работы с ним клали на место. [8.330c]
Заключение
Под математическим развитием дошкольников следует понимать сдвиги и изменения в познавательной деятельности личности, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций.
Математика нужна детям для ежедневной ориентировки в окружающем мире. Математика должна быть представлена в разнообразных видах деятельности. Познание окружающего мира через взаимосвязь разных явлений, отношений является наиболее интересным и полезным для детей. Дети каждый день неоднократно встречаются с математическими отношениями, и почти все математические представления, которые получают дети дошкольного возраста, имеют практическое применение. Математические представления необходимо формировать ежедневно, каждый раз обращая внимание детей на новые математические отношения и побуждая их использовать имеющиеся знания. В дошкольных учреждениях формирование математических представлений должно осуществляться так, чтобы дети видели, что математические понятия отражают связи и отношения, свойственные предметам окружающего мира. На практике условия для применения у дошкольников математических знаний существуют в разных видах деятельности - трудовой, изобразительной, двигательной, когда ставится задача.
При правильной организации вида деятельности и при должном уровне творчества воспитателя в каждом режимном моменте можно формировать и развивать несколько представлений из области математики.
В режимных моментах в комплексе решаются задачи по формированию и развитию всех пяти направлений математических представлений: количественные отношения, представления о величине и геометрических фигурах, пространственные и временные отношения.
Список использованных источников
1. Современные технологии обучения математике. Часть 1 [Электронный ресурс]: учебное пособие/ Васильева Г.Н., Пестерева В.Л.— Электрон. текстовые данные. — Пермь: Пермский государственный гуманитарно-педагогический университет, 2013г.— 144 c
2. Данилова В.В., Рихтерман Т. Д,, Михайлова З.А. Обучение математике в детском саду: Практические, семинарские и лабораторные занятия; Для студентов средних педагогических заведений. - М., 2015г.-160 с.
3. Методика обучения математике. Практикум: учебное пособие для академического бакалавриата / В. В. Орлов [и др.]; под ред. В. В. Орлова, В. И. Снегуровой. — М.: Издательство Юрайт, 2018г. — 174 с.
4. Метлина Л.С. Математика в детском саду. - М.: Просвещение, 2016г. - 256 с
5. Михайлова З.А., Непомнящая Р.Л. Теоретические и методические вопросы формирования математических представлений у детей дошкольного возраста. - Л., 2017 г.- 105с.
6. Мусейибова Т.А., Корнеева Г. А Методика формирования элементарных математических представлений у детей. - М., 2017г. - 159 с.
7. Тарунтаева Т.В. Развитие элементарных математических представлений у дошкольников. - М.: Просвещение, 2018 г.- 55с.
8. Формирование элементарных математических представлений у дошкольников / Под ред. Столяра А.А. - М.: Просвещение, 2017 г. - 330 с.
9. Щербакова Е.И. Теория и методика математического развития дошкольников: Уч. пособие. - М.: Издательство Московского психолого-социального института; Воронеж: Издательство НПО "МОДЕК", 2015. - 392 с