От простых задач к нестандартным решениям: креативное мышление | Герасимова Анастасия Александровна. Работа №338361
Аннотация: В статье освещаются проблемы непривлекательности задач на уроках математики и методы использования креативного мышления, чтобы сделать математику увлекательной и интересной. Автор подчеркивает, что развитие креативного мышления способствует не только освоению базовых математических навыков, но и развитию логического, творческого и критического мышления учеников.
Ключевые слова: Креативное мышление, простые задачи, базовые математические операции, анализ информации, коммуникативные навыки, методы обучения.
ОТ ПРОСТЫХ ЗАДАЧ К НЕСТАНДАРТНЫМ РЕШЕНИЯМ: МЕТОДЫ ПООЩРЕНИЯ КРЕАТИВНОГО МЫШЛЕНИЯ
НА УРОКАХ МАТЕМАТИКИ
Герасимова Анастасия Александровна, учитель,
МКОУ «Береславская средняя школа», п. Бериславка
Аннотация: В статье освещаются проблемы непривлекательности задач на уроках математики и методы использования креативного мышления, чтобы сделать математику увлекательной и интересной. Автор подчеркивает, что развитие креативного мышления способствует не только освоению базовых математических навыков, но и развитию логического, творческого и критического мышления учеников.
Ключевые слова: Креативное мышление, простые задачи, базовые математические операции, анализ информации, коммуникативные навыки, методы обучения.
На уроках математики ученики часто сталкиваются с проблемой непривлекательности и скучности задач. Многие дети не видят в математике ничего кроме бесконечных формул и правил, которые нужно запомнить. Однако, математика может быть увлекательной и интересной, если использовать методы креативного мышления.
Основа математического мышления заключается в умении абстрагироваться от конкретной ситуации и видеть общие закономерности и связи между числами и объектами. Для развития такого мышления необходимо давать ученикам возможность самостоятельно искать решения простых задач, а затем обсуждать их с классом.
Простые задачи представляют собой задания, которые можно решить с помощью базовых математических операций, таких как сложение, вычитание, умножение и деление. Они могут быть представлены в форме текстовых задач, графиков, таблиц или диаграмм. При решении таких задач ученики должны уметь анализировать информацию, формулировать гипотезы, проверять их, находить решение и аргументировать свои ответы.
Простые задачи не только помогают ученикам освоить базовые математические навыки, но и развивают их логическое мышление, творческое и критическое мышление. Кроме того, они позволяют ученикам применять математические знания на практике и видеть их практическую ценность.
Креативное же мышление помогает развить в учениках навыки самостоятельного и нетрадиционного решения задач. Подход, который включает в себя гибкость, оригинальность и инновационность, дает возможность ученикам мыслить нестандартно и находить неожиданные решения задач.
Одним из главных преимуществ креативного мышления на уроках математики является развитие у учеников аналитического мышления. При решении традиционных задач, ученики часто следуют установленному алгоритму и не задумываются о том, каким образом они пришли к решению. В то время как, при использовании креативных методов, ученики вынуждены задуматься над процессом мышления и обосновать свои решения. Это способствует развитию критического мышления и способности видеть вещи с разных точек зрения.
Креативное мышление также помогает ученикам развивать навыки взаимодействия и сотрудничества. Когда ученики решают задачу в нестандартной форме, им требуется общаться и обмениваться идеями. Это способствует развитию коммуникативных навыков и ученической активности. Таким образом, креативное мышление способствует формированию коллективного интеллекта и созданию позитивной атмосферы в классе.
Кроме того, креативное мышление на уроках математики помогает ученикам стать более самостоятельными и ответственными. При решении нестандартных задач требуется глубокое погружение в процесс мышления и самостоятельное принятие решений. Ученики учатся брать на себя ответственность за свои действия, а также становятся более уверенными в своих способностях.
На уроках математики можно использовать различные методы и приемы для поощрения креативного мышления при решении простых задач.
Одним из способов развития креативного мышления на уроках математики является применение творческих методов в решении задач:
- Использование запутанных и загадочных задач. В таких задачах нет явного указания на алгоритм решения, что позволяет ученикам экспериментировать и искать необычные подходы. Например, можно предложить задачу, в которой нужно разбить круг на наименьшее количество одинаковых по площади квадратов. Такая задача заставляет учеников искать новые подходы и находить нестандартные решения.
- Предложение задач, в которых необходимо использовать нестандартные математические понятия или операции. Например, можно предложить задачу, в которой нужно решить уравнение, используя только операцию сложения и деления. Такие задачи заставляют учеников переосмыслить уже известные им математические понятия и находить новые способы их применения.
- Предложение задач, имеющих несколько возможных решений. Например, можно предложить задачу, в которой нужно определить наименьшую возможную сумму трех чисел, зная их сумму и произведение. Ученики могут использовать различные стратегии и прийти к разным ответам, что развивает их способность мыслить гибко и искать альтернативные пути решения.
Для поощрения креативного мышления учеников можно также использовать методику исследовательского подхода к решению задач. В этом случае, учитель ставит перед учениками задачу и предлагает им самостоятельно исследовать ее свойства и особенности. Например, можно предложить задачу о раскрашивании графа с определенными условиями. Ученики могут экспериментировать и находить новые закономерности, что позволяет им развивать не только креативное мышление, но и умение проводить исследования и делать выводы.
Для развития такого вида мышления можно использовать нестандартные задачи, которые требуют необычных подходов к решению:
1. Задача о расстановке цифр на доске. На первый взгляд, эта задача может показаться неразрешимой или требующей длительных вычислений. Однако, если предложить ученикам вспомнить, что в математике есть понятие "парность", то они могут прийти к нестандартному решению. Они могут заметить, что сумма двух четных чисел всегда будет четной, а сумма четного и нечетного числа всегда будет нечетной. Таким образом, чтобы расставить цифры так, чтобы сумма по вертикали и горизонтали была одинаковой, нужно расставить четные и нечетные числа "поочередно".
2. Задача о сортировке чисел. Вместо того, чтобы просто упорядочить числа по возрастанию или убыванию, можно предложить ученикам отсортировать числа так, чтобы соседние числа отличались на заданную величину. Например, ученикам можно дать список чисел и попросить отсортировать их так, чтобы каждое следующее число отличалось от предыдущего на 3. Это требует от учеников не только знания алгоритма сортировки, но и креативного мышления, чтобы найти оптимальное решение.
3. Задача о построении самого короткого пути между двумя точками. Вместо того, чтобы просто провести прямую линию между двумя точками, можно предложить ученикам найти самый короткий путь, используя только определенные элементы, например, только дорожные знаки или только деревья. Это требует от учеников нестандартного мышления и поиска необычных подходов к решению задачи.
Выводя учеников за пределы традиционных задач и стимулируя их креативное мышление, учитель не только делает уроки математики более интересными и увлекательными, но и развивает учеников всесторонне. Такой вид деятельности на уроках математики способствует развитию аналитического, критического и коммуникативного мышления, а также помогает ученикам стать более самостоятельными и ответственными. Эти навыки будут востребованы не только при решении математических задач, но и во многих других сферах жизни. Поэтому, использование методов креативного мышления на уроках математики становится важным и необходимым шагом в современном образовании.
Список литературы
1. Кочеровская, Е. С. Методы развития креативного мышления на уроках математики / Е. С. Кочеровская. — Текст : непосредственный // Образование и воспитание. — 2015. — № 3 (3). — С. 30-31.
2. Чебакова Г.В. Учимся с интересом. // Наука, образование и культура. М., 2018. № 7 (31).